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General Constructive Theory of Parametric

and Robust Data Smoothers

P. Papantoni-Kazakos
The University of Connecticut
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and Computer Science

Storrs, Connecticut 06268

Abstract

In relatively recent years, several algorithms for smoothing of time series

have been proposed by statisticians. Some of the simpler such algorithms have

been also applied in several engineering applications such as Image Processing.

The smoothing problem and the implied objective have not been formalized

and stated, however. This fact presents a serious handicap when different

smoothing algorithms are to be compared in terms of their performance.

In this paper we take a fresh and daring approach to the whole smoothing

problem. We formalize the problem as the extraction of a low entropy process

from a high entropy process, and as a result we present a constructive theory

of parametric and robust data smoothers.

We claim that parametric data smoothers are analog-to-digital converters,

and that robust data smoothers are stochastic such converters. 1-f l rs For
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1. Introduction

Whenever a new experiment is set, there is no a priori information as to

the statistical nature of the outcome. It is desirable, therefore, to attempt

conclusive evaluation of the statistical behavior of the experiment outcomes,

through repetitive observations from the same experimental setting. The task

is particularly challenging due to the noisy nature of the observations.

In satellite communications, the transmitted useful data are corrupted by

atmospheric noise. The task of the receiver is to extract the unknown useful

data from their noisy version. The encoded transmission of images through

satellite, fall into this category.

The above, are only two of many indicative applications, which initiated the

consideration of data smoothers. The general objective of the data smoothers is

the extraction of an unknown data process (or time-series as called in the

statistical literature) from its noisy version.

Unfortunately, no qualitative definition of the data smoothers exists. The

objective of the data smoothers has been only implicitly determined in terms as

general as: "Extraction of a smooth data process from a nonsmooth noisy data

sequence".

Using the above vague definition of the objective of the data smoothers,

Tukey [1] proposed several ad hoc smoothing algorithms. Due to the lack of a

qualitative theory, Tukey's algorithms can not be evaluated coherently. Recog-

nizing this problem, Mallows [3,4] presented a first formalization of some theory

of nonlinear smoothers. Mallow's approach consists of guaranteeing some desirable

properties, it is limited to memoryless data, and it still lacks general qualita-

tive formalization. Martin [5] assumed certain known structure of the data

I
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process and presented accordingly a class of conditional - mean type robust data

smoothers. On the other hand, recognizing the need for data smoothers on

unknown data processes, Huber [2] took a statistics-free approach and formalized

robust smoothers within the framework of data splines.

Our view is that the approaches in [2-5] are enlightening but also intriguing.

A qualitative formalization of the smoothing problem is still lacking, and this

fact makes the evaluation of different proposed data smoothers virtually impossible.

Furthermore, we are in agreement with Huber's general philosophy. Specifically,

we think that in the smoothing problem it is not realistic to assume certain

given structure of the data process. The very objective of the data smoothers

is the extraction of the data sequence and the possibly consequent evaluation of

its underline statistical behavior.

We believe that the key to a general qualitative theory of data smoothers

is the qualitative characterization of the term "smooth". Indeed, the term

implies certain general knowledge about the process which generates the data

sequence to be extracted. In fact, we believe that the term implies possibly

relative knowledge about the data process, in comparison to the noise process by

which the data process is corrupted.

From now on, we will use the following terminology: We will call informa-

tion carrying process, the stochastic process which generates the data sequence

we wish to extract. We will call noise process, the stochastic process which

corrupts the data from the information carrying process. We call observation

process the stochastic process induced by the conjuction of the information

carrying and the noise processes.

Starting the introduction of our theory, it is necessary to refer to the

implicit assumption under the operation of the data smoothers. The assumption

I
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is that the information carrying process allows for data sequences with only

low level variations in time, and that any high level such variations are due

to the noise process. This assumption is hidden behind the term "smooth"

assigned to the information carrying process. But in more qualitative terms,

this implicit assumption equivalently means that the uncertainty about the

information carrying process is low, as compared to the uncertainty about the

noise process. Using the term entropy for uncertainty and the fact that the

process induced by a low entropy process in conjuction with a high entropy pro-

cess is a high entropy process (the observation process in this case), we can

formalize the objective of the data smoothers in the following way:

Extract some data sequence generated by a low entropy process, from

a data sequence generated by a high entropy process.

The above formalization regarding the objective of the data smoothers is

still vague, but it sheds light as to the proper direction towards a qualitative

general theory. Taking one further step towards the develcpment of such a theory,

we first consider parametric data smoothers and then we expand to incorporate

consideration of robust data smoothers.

We consider the problem of parametric data smoothers arising when the noise

process is well-defined, or more specifically, when every process induced by

any given data sequence from the information carrying process and the noise

process, is well-defined.

We consider the problem of robust data smoothers arising, when every pro-

cess induced by any given data sequence from the information carrying process

and the noise process, is statistically contaminated.

Tn both the problems of parametric data smoothers and robust data smoothers,

we assume that the information carrying process is a low entropy process as

I
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compared to the noise process. To quantify this, we may assume an upper bound

on this entropy, in which case we may proceed with the following definitions:

Definition I

A stochastic process is smooth with degree of smoothness 3 if its entropy

is bounded from above by B.

Definition 2

A stochastic process is oversmooth if its entropy is zero.

An oversnooth process corresponds to a constant, thus definition 2 is

consistent with Huber's oversmoothing [2].

Also, the assumption of smoothness of some degree is implicit behind all

the rp. osed smoothing operations [1].

In this paper, we will consider stationary and ergodic information carrying

and noise processes. We will not restrict our analysis to memoryless processes,

however.

2. Preliminaries

Let [-o,A,X] be some stationary and ergodic process, where p is the proba-

bility measure of the process, A is the process alphabet, and X its name. Denote

by x a discrete-time, infinite sequence of process elements, and by xn an

n-dimensional sector of x. Denote also by Xl; j > i the sequence Xi., Xi,... X.
+ - i+ ' j

of j-i+l consequtive elements from the process.

n
Let [v,B,Y] be another staticoaary and ergodic process, where V,B,Y,y,y

Yj; j > i as above.

i Let V be the measure induced by an infinite sequence x from the process

X
I [,A,X] and the process [v,B,Y]I, and let C, W. be the induced alphabet and name

I
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respectively. We will assume that the superposition relationship bet-een the

[P,A,X] and [V,B,Y] processes is well-known, and that therefore if x known and

[V,B,Y] well-known then the process [V xC,W] is well-known. The process

[vxC,W] can be looked upon as a transmission channel for the process [4,A,X],

and the superposition relationshin between the processes [i,A,XI and [V,B,Y] can

be, for example, additive.

Let us denote by w, wn, W ; j > i sequences from the process [vC,W], as

for the process [u,A,X].

Let us denote by {sl} a sequence of sliding block functions on data

sequences from the process [VxC,W], where the sequence is determined by varying

the length Z of the sliding block window.

Each sliding block function s (.) produces a discrete-time sequence z with

elements Z. ; j = ..., -1, 0, 1,..., through the following operation:J

z. = St ; j M+l < t 1

The function se(.) in (1) is time-invariant, it operates on 1-length blocks

of elements from the process [VC,W], and it can be either a deterministic or

a stochastic function. If Vs 1 is the measure induced by V and s forx x

different w sequences, if D is the induced alphabet, and if [vxC,W] is stationary

-i
and ergodic, then so is the process [V s 1, D,Z] [see reference 7]. We will

1
denote by s f the measure induced by the sequence w and the sliding block

function in (1). This last measure is nontrivial if the sliding block function

Se(') is stochastic.

Given the two stationary and ergodic processes [l-,A,X] and [V,B,Y], we

j will consider superposition relationships between them such that they result

I
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in a process [1V,E,V] which is also stationary and ergodic. Such a superposi-

tion relationship is the additive. Then, the class of processes [V ,C,W]

generated by different x sequences from the process [P,A,X], are all stationary

and ergodic also. In this case, conclusions about the measure V can be drawn
x

from t mdain averages on the sequence w. Also, if the process [VBY is

an infinite alphabet (analog), high entropy process, and the process [P,A,X] is

a low entropy process, the process [pv,E,V] and the class of processes [vx,C,W]

will all be infinite alphabet and high entropy processes.

If we wish to reduce the entropy of the process [V ,C,W] to values below a

finite value 8, quantization is necessary.

In the following sections, we will use the construction of empirical measures

from data sequences, as in [6,7]. Specifically, given a finite discrete-time
n

sequence w n from the stationary and ergodic process [vxC,W], we form a string

n n nw ... w , w , --- ) by repeating the sequence w . If P n is the empirical
-1 w

measure formed by assigning probability n on each string T1w ; i = 0, 1, .., n-l,

where T indicates one step shift in time, then:

wn i; F A7 (2)
w i:T wF

where the generalization of the cr-algebra A of sets on the space C on which

each datum W. assumes values. The empirical measure p has restrictions k1 n n-I w w
-l n

which assign measure n to each k-tuple of k adjacent symbols within w . The

process in (2) is then periodic, stationary, ergodic, and the empirical measures

k
)ikn are trustworthy for k < n. Furthermore, if "k indicates the k-dimensional

w

Prohorov distance as in [6,7], then the ergodic theorem implies that for fixed k:

tim rk (Pkn vk) = 0 , a.e. in measure V (3)

where V the k-dimensional restriction of the measure v
x xI
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3. Parametric Data Smoothers

a. Model Introduction

Let [i,A,X] be the stationary and ergodic information carrying process.

This process is unknown, the only knowledge available being that it is a smooth

process with degree of smoothness a (as in definition 1).

Let [V,B,Y] be the stationary and ergodic noise process. This process is

well-known, it is in general an infinite alphabet (analog) process, and its

entropy is much larger than the bound .

To avoid' unnecessary complications in our analysis, we will assume [as in

1-5] that the superposition relationship between the processes [p,A,X] and

[V,B,Y] is additive. Then, the observation process [PV,E,VI induced by the above

information carrying and noise processes, is also stationary and ergodic. Furthpr-

more, the process [vIv,E,V] is an infinite alphabet (analog), high entropy process.

We will state the objective of the parametric smoothers formally, through a

proposition.

Proposition I

The objective of the parametric smoothers, is to extract the smooth with

degree of smoothness but otherwise unknown process [p,A,X] from sequences v

from the observation process [PV,E,V], where the noise process [V,B,YI is a

well-known, high entropy process.

To accomplish the objective of proposition 1, we must perform certain opera-

tions on the observation sequence v. Such operations will be called smoothing

functions. Also, the observation sequence is usually finite, of say length n.

n
Then, the smoothing functions should operate on finite observation sequences v

I
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The imposed finite sequence limitation, necessitates the most effective
n

utilization of the observation sequence v . Due to the stationarity and ergodi-

city of the observation process [V,E,V], such most effective utilization of the

observed data can be obtained through the introduction of a sequence {st) of

sliding block smoothing functions. In fact, if [V ,C,W] is the process induced

by some sequence x from the information carrying process and the noise process

[V,B,Y], the observed sequences wn are utilized effectively by a sequence of

smoothing functions as in (1), for t < n.

We formalize the above discussion by a proposition.

Proposition 2

The objective of proposition 1 is most effectively accomplished through, in

general, a sequence {s < - < n of sliding block smoothing functions on observed

n
sequences w

It is well known [7,8] that each sliding block smoothing function sp, when
n

operating on sequences w from the stationary and ergodic process [vx,C,W],

induces a stationary and ergodic process. Therefore, time averages converge then

asymptotically to probability measures (in measure).

Each of the processes [Vx , D, Z], induced by the process [V ,C,W] and
x x

the sliding block smoothing function s, is designed to "approximate" the

information carrying process [p,A,X]. Therefore, each of the processes

-I
[Vx st , D,Z] should have entropy close to the entropy of the process [p,A,X].

But if the process [P,A,X] is smooth with degree of smoothness a, its entropy is

bounded from above by the finite number B. Thus, the entropy of [v s-1 DZ]

should be within these limits. On the other hand, the entropy of the process

[vxC,W] is high compared to 3. It is then well known [7] that to achieve thelx
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desirable entropy reduction we must include quantization (analog-to-digital

conversion) within the operation of the sliding block smoothing function sZ.

Therefore,

Lemma I

The objective of proposition 1 is most effectively accomplished through, in

general, a sequence {sl } ; t < n of sliding block smoothing functions on observed
n

sequences w , where each such function st is an analog-to-digital converter.

We would like to point out herc that the analog-to-digital or quantization

operation is equivalent to the operation of a low pass filter, which eliminates

bandwidth resulting from the noise only.

Lemma 1 implies that the class of the appropriate parametric sliding block

smoothing functions is a class of non-linear functions, which convert analog data

to digital data.

More specifically, we propose a sequence {sl } such that each se operates on

the premise of estimating e-dimensional probability masses from the process

[V X,C,W]. We propose that then these estimates be used for the extraction of the

unknown sequence x.

To illustrate quantitatively our proposal let us first assume that the

process [p,A,X] is oversmooth (definition 2). Then, the information carrying

process reduces to an unknown constant C. This constant is also a location para-

meter if the additive superposition relationship between the processes [P,A,X)

and [v,B,Y] is true. In this case, we propose a sequence {st} of sliding block

smoothing functions, which is reduced to one element sl, Specifically let S(. )

operate on the observation sequence w in the following way:

s I (wj w >0 (4)
;w. <0

I
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Then, due to the stationarity and ergodicity of the process [VB,Y], the

n

average n 1 E s(1 (w) estimates the probability mass of negative values for the

j=1

one-dimensional restriction V from the measure V . This estimate converges
x x

1
asymptotically to the true probability mass, in measure V. If the noise process

[r,B,Y) is zero mean, and if F 1 indicates the cumulative distribution implied by

its one-dimensional restriction V , then the constant C is estimated as follows:

n

C(w = - F (nl sl() (5)
V j=l

Let us observe that due to the invertible nature of the function F 1 (x), the entropy

n V
n

of the variable G(Wn) is equal to the entropy of the variable n-I Sl(Wj),

j=1

which converges for n - 0 to zero.

When the information carrying process [P,A,XI is not oversmooth but simply

smooth with some possibly unknown degree of smoothness, we propose a sequence

<; L < n of sliding block smoothing functions. We propose, more specifically,

that the s1(.) such function operate as in (4) and (5) for the estimation of the

digit xI from the sequence xn. Furthermore, we propose that the s2(.) smoothing

function be used to estimate the two-dimensional probability masses of 
2

conditioned on the estimated by s1(.) digit x1 , and subsequently be used to

estimate x conditioned on the x estimated value. In general, we propose a

recursive use of the functions sl, in such a way that sL(.) is used to estimate

the conditional measure Jx (lxjl) , and subsequently the digit xt conditioned

on the previously estimated vector x 1

I
I!



This subsection was dedicated to some explanatory statements regarding the

general approach we adopt in this paper. Our approach is further formalized in

the following subsection.

b. Rigorous Abstract Formalization

Based on the preceding discussions, we consider ourselves ready at this

point, to formalize a general theory on parametric data smoothers.

Let [v,B,Y] be a well-known infinite alphabet, stationary and ergodic, high

entropy stochastic noise process.

Let [iv,E,V] be an infinite alphabet, stationary and ergodic, high entropy

observation process, induced by a well-known superposition relationship between

the well known process [V,B,Y) and some unknown low entropy stationary and

ergodic information carrying process [P,A,X].

Let {s be a sequence of sliding block functions, operating on sequences

v from the [PV,E,V] process. Each sliding block function s,(.) produces a

discrete-time sequence z with elements Z. through the following operation:

Z.i= S. Vj-++) ;m+l< y (6)

As in section 2, the function in (6) is time invariant, it operates on

e-length blocks of elements from the sequence v, and it can be of either deter-

ministic or stochastic nature. If it is of stochastic nature, s I will
C ,v

indicate the measure induced by sy and a given sector v from the sequence

-i
v. We will denote by liv s. the measure induced by the process [PV,E,V] and

the function st, for different v sequences. We will denote by D the induced

alphabet. Then, the process [Vst ,D,Z] is also stationary and ergodic.

We now proceed with the following definition:

I
Al
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Definition 3

The sequence {st} of sliding block functions is a sequence of parametric

data smoothers for the process [iV,E,V], if each induced process [Vst ,D,Z]eD,]is

an estimate of the information carrying process [VA,X].

Let it now be known that the unknown information carrying process [P,A,X]

is smooth with degree of smoothness (definition 1). Then, the "estimate-

processes" [uVst ,D,ZI should be also smooth with degree of smoothers 8.

We can now proceed with the following theorem:

Theorem I

Given that the information carrying process [p,A,X] is smooth with degree of

smoothness 8, and that the observation process [PV,E,V] is a high entropy process

with entropy much higher than a, the sequence {sY } of parametric data smoothers

for the process [iv,E,V] is a sequence of sliding block analog-to-digital con-

verters (or quantizers).

The proof of the theorem is straight-forward from the definition of parametric

data smoothness for the process [pv,E,V] (definition 3), and the fact that entropy

reduction (from the entropy of the observation process to the entropy of the

information carrying process) can be obtained only through quantization.

We will conclude this section by pointing out emphatically that definition 3

and theorem 1 indicate clearly the appropriate performance criterion in the design

and evaluation of parametric data smoothers. In particular, this criterion is

entropy matching between the processes induced by the smoothers and the entropy

of the unknown information carrying process. The choice of this criterion is

I
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clearly dictated by the very nature of the problem. Furthermore, the entropy

perfornance criterion also dictates the result in theorem 1.

4. Robust Data Smoothers

a. Definition

Our analysis in this section is based of course on the theoretical formaliza-

tion for parametric data smoothers in section 3, and it is parallel to the analysis

in [7,8].

We will first explain the statistical model applicable to robust data

smoothers.

As with the parametric data smoothing problem, the information carrying

process [ji,A,X] is unknown. What is known, however, about this process, is that

it is ergodic and stationary and that it is smooth with degree of smoothness 0.

The basic difference between the model of section 3 and the present model,

lies on the knowledge about the noise process [V,B,Y]. Indeed, here we assume

that the noise process may be statistically contaminated. That is, it may be

any member from a family M of stationary and ergodic processes. As in [7] we will

assume that the exact membership of the family M is not known, and we will focus

on families of data smoothers which guarantee local performance stability around

a nominal well known noise process [voB,Y].

As emphasized in section 3, the performance criterion for the design and

evaluation of parametric data smoothers should be the output entropy induced.

Therefore, when the noise process is ill-defined, the local performance stability

sought should be stability in the output entropy induced, when statistical

deviations from the nominal noise process are present.

k! .....
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Let us denote by H(pv s L) the entropy of the output process [Vv s 1,D,Z],

which is induced by the information carrying process [V,A,X], the noise process

[V,B,Y],and the sliding block quantizer st(.).

As in [6,7,8], we will use the p distance as a measure of closeness between

two stationary processes. As explained in [6], the p distance is the appropriate

distance in this case, as opposed to the Prohorov distance. However, as in

[6,7,81 our analysis will use the construction of sequences which imply Prohorov

closeness between finite-dimension restrictions from the stationary measures. We

emphasize this point here, to eliminate some objections as to the demanding pro-

perties of the p distance.

We now proceed with a definition for robust data smoothers.

Definition 4

Given a stationary and ergodic as well as smooth information carrying process

[p,A,X], given a high entropy stationary and ergodic noise process V and a0

family M of stationary and ergodic processes that contains V0 , the sequence {sl }

of sliding block analog-to-digital converters is robust at Vo in M iff:

Given E > 0, there is some 6 > 0 such that for all t and all processes vEM:

P(v ,V) < 6+ jH(Iv ) H(JVs )I < C

We notice from definition 4 that our statistical contamination is included

in the noise process only. That is, we focus on adjusting a sequence {sl } of

parametric data smoothers designed for some fixed (but unknown) information

carrying process and some well-known fixed noise process, in a way that entropy

stability is guaranteed if the information carrying process remains the same but

variations in the assumed noise process may exist. However, due to the lack of
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precise statistical description on the information carrying process, our assumed

statistical contamination can be at least partially carried over to this process.

Our formalization is general enough to incorporate this generalization.

Now, as explained in [7,8], since the processes [pvst, ,D,Z] are finite

alphabet processes (due to the fact that s,(.) is an analog-to-digital converter),

we can concentrate on {st} sequences which guarantee p closeness of the processes

1VoS and jvs, . Such closeness will then imply the entropy closeness required

by definition 4. To formalize this statement, we proceed with the following

l emma:

Lemma 2

Given [VA,X], vo, M as in definition 4, and a sequence {s,} of sliding

block analog-to-digital converters such that:

Given c > 0, there is some 6 > 0 such that for all I and all processes

vEM:

Pv < (,V0st 1  It < E

Then, the sequence is } is robust at V0 in M.

In lemma 2, we notice that as in [7] we allow for possibly different

distortion measures d(.,.), PC.,.) on the a- algebras of the pvs 1 and V

processes respectively. That is, d indicates rho bar distance defined through

the distortion measure d(.,-).

As in [7,8], if the data smoothers in the sequence {s are deterministic,

each output Z in (6) assumes a unique value for every fixed value of the observed

j+m
sequence vj+m+. if, on the other hand, each s is stochastic, each observed

sequence v J+M induces a measure.

I
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b. Sufficient Conditions for Robust Data Smoothers

Our sufficient conditions will be basically the same as in [7]. We will

present them here, referring to the proofs in [7], and then we will discuss some

of the implications behind the distance measures we use.

Let the superposition relationship between the information carrying process

[p,A,X] and the noise process [v,B,Y] be such that if [iv,E,V] is the induced

process, then,

0 0
P 0')< (P P+V < V' C ~v M. (7)

Such superposition relationship is the additive.

Let E be the a-algebra of sets from the alphabet E, and let y be the metric

on E. Let D be the a-algebra of sets from the alphabet D, and let be the metric

on D. Then, we will model each sliding block smoothing function sZ, as a

stationary, zero memory, (in general stochastic) channel [E ,sZ,V] mapping sets

from E onto sets of D, such that for some fixed integer m satisfying m+l < t:

n-1

S n n-l+m (z-EDXDx'..xD ) = sl j+m (ZJEDj) ; Vn, VDJE D

o'_ ol1 n-l jj v
-+m+! j=0 ,Vj+m+l

;i=o,...,n-i (8)

Each s e represents, in general, a measure for every given sequence v Z
1C,v 1

This measure is nontrivial if the mapping induced by sy is stochastic. s 1
tv

designates, in general, a conditional measure representing the transition proba-

bility of the channel in (8), conditioned on the sequence v .
Lt1 1

Let s IvZ' S1,wl be two conditional such measures conditioned on two different
Ce'v C'w

1e t
sequences v , w respectively.

I
I
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Let T1dl (s sI t) denote the Prohorov distance between the measures
tv t,w

s 1 t ; where the distortion measure d(.,.) is implied in the distance.
tv Z,w

Let 11dk indicate the k-dimensional Prohorov distance, where the distortion

measure d(.,.) is used.

Let B be the a-algebra of sets from the alphabet B, and let the same metric

y as with the algebra E be the metric on B.
t

Let V i be the empirical measure constructed from the sequence x , as given
x

k
by (2) in section 2, and let i be its k-dimensional restrictions.

x
Then, as in [7], we can present the following definition:

Definition 5

i. The sequence {sl of stochastic (in general) sliding block channels

is continuous, if given vtc t, >O, there exists (, v,)>O

such that:

y/(v ,w ) < 6 implies 1[,I (sl 1 ' sl 1 ) < e.
tv I,w

ii. The sequence {s1} of stochastic (in general) sliding block channels

is continuous at the measure V , if given 6 > 0, n > there exist:

integers k, to, some 6 > o, and for each I > to some set A e with

v 0(A1) > 1-n, such that: for each x CA , y CEt with the property:

k k <Hy,k (P k/t, Pkl) <

x y

it is implied that:

H I (s 1 V sI 1 ) < E
t , 1,y

V _
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The above definition is the same with definition 4 in reference [7]. Using

the statements in this definition, we can now express the following theorem:

Theorem 2

Let p be a fixed stationary and ergodic smooth information carrying process.

Let v be a given stationary and ergodic, high entropy, analog noise process. Let
0

M be a given family of stationary and ergodic, high entropy, analog processes,

that contains V0. Let a sequence {st} of sliding block analog-to-digital converters

be given. Let also the distortion measure p(,.) be used for the processes \)M, PV,

where pv the process induced by the superposition of p and v. Let y be the common

metric on the a-algebras of both V and PV, and let the "p and V superposition be

such that:

P( ov) < 6 P(PVo ' pv) < 6 ; vo'vEM (9)

Let the distortion measure d(-,.) be used on the processes IVSZI . Let

p(','), d(-,.) be such that: Given E > 0, there exist 61 > 0, 62 > 0 such that:

p(XY) < 61 - y(XY) < C

C(X,Y) < 62 - d(X,Y) < e

, where y, as in definition 5.

Then:

i. If {s is a sequence of stochastic sliding block channels that is continuous,

then (st} is also robust at V in M (Def. 4) for finite length t sliding
0n

block windows.

ii. If {s.1 is a sequence of stochastic sliding block channels that is continuous

at the measure V 0 then {s} is also robust at V0 in M (Def. 4) for unbounded

lengths L of sliding block windows.

- - "I _ A'.. I _I "- I I .
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Due to the assumed property (9) in the theorem, the proof of it (including

measurability of the sequence {s,}), is exactly the same with the lengthy proof

of theorem 2 in [7]. In fact, the statement in lemma 2 is proved there. This

statement results in the property of robustness as expressed by definition 4.

Again, the sufficient conditions which guarantee the satisfaction of robust-

ness, are such that they do not allow for deterministic sequences {sQ of sliding

block analog-to-digital converting data smoothers. The conditions, imply again

(as in [7,81) that for thp satisfaction of robustness, the sequence {sl } has to

be a sequence of stochastic smoothers-converters.

There are a few points resulting from the presented analysis, which we feel

that must be particularly emphasized. Thus, we include them in a separate section.

5. Importan: Observations

1. The analysis we have presented leads to the following general conclusion:

Data smoothers of high and robust performance, are a sequence of

sliding block stationary stochastic analog-to-digital converters.

A sequence of sliding block data smoothers utilizes the available data

sequences more efficiently. The analog-to-digital operation is needed for

smoothing, or entropy compression. The stochastic nature of the smoothers

guarantees performance stability in the presense of statistical contaminations.

If the observation sequences, on which the smoothers operate, are of finite

length (as it is usually the case), only continuity (Def. 5.i) of the smoothers,

as real functions on the data, is needed for robustness.

2. It has been felt by some researchers in the area of robustness that the p

distance is too strong a measure as a contamination criterion on the space of the

data processes. As emphasized in [6], the p distance is the only appropriate

existing such measure for spaces of general stationary processes with memory.

A
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The Prohorov distance does not provide then an appropriate upper bound on the

distance between different finite restrictions of the processes. However, given

two stationary processes 1o,0 p, if it is desired that their closeness be measured

by the Prohorov distance ITk(PJO k'P ) between their k-dimensional restrictionspk

k
and p , the conditions in definition 5 and theorem 2, as well as the results in

[6,7,8] hold as they are. The reason for that is, that in the proof of theorem 2

k k
(found in [7]) only the Prohorov distance k(%'A, p ) is used as a measure of

closeness between the processes P0 and p.

3. There is an important side-result evolving from the presented theory, which

we want to emphasize through a theorem. The result is asymptotic and it refers

to stationary sliding block channels [E,s., D] with sliding block window of

asymptotically large length.

Let us denote by s(uv) the limit stationary and ergodic process induced by

the process P and the sliding block stationary stochastic channel s., for

Z -? 0. Let us denote by sn(pV) n-dimensional restrictions of this process.

Then, we can express the following theorem:

Theorem 3

Condition ii in definition 5 is sufficient and necessary for the satisfaction

of the following property:

Given 6 > 0, there exists 6 > 0 such that:

P(VoV) < 6 Rd,l (( O)' s (Pv)) < E ; VCM.

Theorem 3 expresses a strong and important property. The property says that

continuity at the measure V (definition 4.ii) is also necessary (in addition to0

being sufficient for asymptotic entropy stability), if Prohorov closeness of the

first-order restrictions of the processes induced by the sequence {s} in the
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limit (C c) is demanded. We call this property consistency stability.

The proof of theorem 3 can be found in the appendix. The same proof holds

for the second part of theorem 2, in reference [8].

6. The Reconstruction of Continuous - Time Waveforms

As stated by Huber [21, one of the important, possibly subsequent operations

of the data smoothers, is the reconstruction of continuous-time waveforms f(t)

from a discrete-time sequence x generated by the information carrying process

[p,A,X].

In this section, we will show that such reconstruction is asymptotically

possible only if the analog-to-digital converters s t are stochastic. This result

presents an additional argument in favor of stochastic analog-to-digital sliding-

block data smoothers, which also satisfy the conditions of definition 5.

Let x be a discrete-time sequence generated by the information carrying

process [v,A,X]. Let [Vx,C,W] be the process induced by the sequence x and the

noise process [v,B,Y]. Let {s be a sequence of sliding-block analog converters

operating on the sequence w.

Let f(t) ; -- < t < - be the continuous-time waveform whose sampled version

is the sequence x. Let these samples be in distance u from each other, so that
the kth element xk from the sequence x is given by xk = f( k). Let g(xk) be the

quantized version of the element Xk, as induced by the sequence {sl}.

Let {u } be a sequence monotonically decreasing to zero (for n increasing),n

and let {hk(u ,t)} be a sequence of kernel functions satisfying the properties

in [9], where the sequence is generated by varying k.

Define

CO

f (t) E xk hk(U,t) (9)

k=_x o

Then, it is well-known that f (t) -+ f(t).
n n 4

I
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Define

CO

gu(t) = ( k hk (Unt) (10)
k=-0

Then, we can express the following lemma:

Lemma 3

If f(t) is a bounded, uniformly continuous function on (- ,oo) and g(xk) is
a deterministic analog-to-digital mapping, then the function g (t) does not

n

converge to f(t) for n .

Proof

Suppose that gu (t) converged to f(t) for. some t. Then, given C > 0,
n

there exists n such that:
0

fu n (t) - gun(t) < ; V n > no. (11)

Let

Y={'' Y-l1' Yo' Y I'"}

; where y = g(xk).

Let 11 x Vy be the empirical measures from the sequences x and y respectively,

as in (2). Then, due to theorem 3, property (11) can be satisfied if and only

if some 6 > 0 can be found such that:

y, (Pxly)< 6 implies fu (t ) - g t) < E ; n > n (12)

for all x sequences within some compact space of C which covers most of A7.

Such a compact space clearly exists for bounded f(t) functions.

But if g(xk) is deterministic, it is also discontinuous. Therefore,

property (12) can not be satisfied.
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Let now the mapping g(xk) be stochastic. Specifically, let g(xk) be any

measure continuous in xk* That is, given C > 0 and Xk, there exists some

6= 6(C, xk) > 0 such that

Ixk - zJ < I + , (g(xk), g(z)) < .

Such a g(-) generates a sequence of measures gu (t), for every fixed t and
n

varying n.

Define

Gu (t) 2: E{g(xk)} hk(unt) (13)

where E{g(xk)} the expected value of g(xk).

Define

G(t) = Lim G (t) (14)u

and let G(t) exist.

Then, G(t) is uniquely determined through the choise of the g(x ) measures.

Let the measures g(xk) be such that the function G(t) in (14) is a one-to-

one, continuous, and monotone function of f(t). That is, f(t) G (f(t)), and

given C > 0, there exists some 6 > 0, such that:

IG(t1) - G(t2)I <6 - If(t1) - f(t2)I < C

Then, we can express the following theorem.

Theorem 4

Let the analog-to-digital mapping g(xk) be stochastic, continuous as a

function of xk, and such that it induces a function G(t) which is a one-to-one,

continuous, and monotone function of f(t). Then, the function

I



-24-

gu (t) = g(xk) hk(Unt)

k=_o-

converges for n + 0 to G(t) almost everywhere for all t. Therefore, G 1(f(t))

converges then to f(t) a.e. for all t.

Proof

Let n1 , n2 be given. Define

X f(k) y = f(k
Xk u ''k = unI  n 2

x = {..., x o, xo , x, ..

Y ={.'''Y-1 Yo' Y ...}

Due to the nature of the kernel functions [as in 9], and the boundness and

uniform continuity of f(t), we have:

There exists some n0 and some compact space A in A7 which covers most of

A7, such that condition ii in definition 5 is satisfied for all n., n2 > n and0

xCA, yAe. Specifically, given n1 , n2 > no , xcA and E > 0, there exists some

6 > 0 independent of x, such that:

1y, I (11') < 6

implies Hl (gu (t), gu (t)) < C ; V t ; V nl, n 2 > nS 0

But since gu (t), gu (t) are bounded, we also have then:
n I  n 2

V (g (t), g (t)) < c ; Vt ; V n, n2 > n
CUn I  un 2 2 0

where V (.,.) denotes the Vasershtein distance defined through the metric .

But Vasershtein closeness implies convergence to the mean of G(t) a.e. for

all t.I



-25-

The proof is now complete.

Lemma 3 and theorem 4 prove that the design of stochastic analog-to-digital

smoothing functions is necessary and sufficient for the asymptotic reconstruction

of the f(t) waveform from its discrete-time version x.

1

!I
!i

..................
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Appendix

Proof of theorem 3

First we will prove the sufficient of the condition in definition 5.1i.

Then, we will prove the necessary.

1. Let the condition in definition 5.ii. be true.

In this case, we only have to prove the existence of sl (Pv) for each

VeM; that is consistency for some s (Ov).

Then, since for all t > t,9 given C > 0, there is 6 > 0 such that:

(Vov) < 6 d(PVoiV) < C ;. V ,vM

if the condition in definition 5.ii, holds, then clearly:

P(VoV) < 6 + ld,l(s (ivo), sl(v)) < C

also, since the d distance bounds from above the Prohorov distance Hdk

for all k.

To prove consistency at some veM, we only have to prove that for any

6 > 0 and for some s1 (pv), we have:

tim V(x: s (PV)) > 6) = 0

But this results exactly the same way and by the same construction

of sets as in the proof of lemma 5.2. in [6], in conjuction with the

fact that the condition in definition 5.ii. implies:

x 1

[ d,l(s 1 v, s ) E.

r"y,k ( MPVk)< Ye y < C.

y
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2. Assume that the following property is true:

Given C > 0, there exists 6 > 0, such that:

1 1
P(V 'V) < 6 Id,l (s (PV0 ), s (PV)) < C ; V ,VEM (A.1)

The implicit assumption behind the above property is existence of

consistency. In particular, it is implied that the sequence (se) is

consistent at all measures V in a neighborhood of v0, within M.

But p(vov) < 6 implies

1 p,k (vk, vk) < 6 ; V k

Now, suppose that the condition in definition 5.ii. does not hold.

Then, there is no k and no I such that

k k) 1 -1 1 -111

Pk(V V < ,l(livose , iv s) < C , V >

so (A.1) can not be true.

Therefore the nonholding of the condition in definition 5.ii. presents

a contradiction. Thus, necessity holds.

I
-I
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